Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500569

RESUMO

A variety of Artificial Intelligence (AI)-based (Machine Learning) techniques have been developed with regard to in silico prediction of Compound-Protein interactions (CPI)-one of which is a technique we refer to as chemical genomics-based virtual screening (CGBVS). Prediction calculations done via pairwise kernel-based support vector machine (SVM) is the main feature of CGBVS which gives high prediction accuracy, with simple implementation and easy handling. We studied whether the CGBVS technique can identify ligands for targets without ligand information (orphan targets) using data from G protein-coupled receptor (GPCR) families. As the validation method, we tested whether the ligand prediction was correct for a virtual orphan GPCR in which all ligand information for one selected target was omitted from the training data. We have specifically expressed the results of this study as applicability index and developed a method to determine whether CGBVS can be used to predict GPCR ligands. Validation results showed that the prediction accuracy of each GPCR differed greatly, but models using Multiple Sequence Alignment (MSA) as the protein descriptor performed well in terms of overall prediction accuracy. We also discovered that the effect of the type compound descriptors on the prediction accuracy was less significant than that of the type of protein descriptors used. Furthermore, we found that the accuracy of the ligand prediction depends on the amount of ligand information with regard to GPCRs related to the target. Additionally, the prediction accuracy tends to be high if a large amount of ligand information for related proteins is used in the training.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Inteligência Artificial , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Genômica/métodos , Humanos , Ligantes , Aprendizado de Máquina , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Máquina de Vetores de Suporte
2.
Medicines (Basel) ; 8(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065377

RESUMO

Background: Eukaryotic elongation factor 2 kinase (eEF2K) regulates the elongation stage of protein synthesis by phosphorylating eEF2, a process related to various diseases including cancer and cardiovascular and neurodegenerative diseases. In this study, we describe the identification of novel eEF2K inhibitors using high-throughput screening fingerprints (HTSFP) generated from predicted profiling of compound-protein interactions (CPIs). Methods: We utilized computationally generated HTSFPs referred to as chemical genomics-based fingerprint (CGBFP). Generally, HTSFPs are generated from multiple biochemical or cell-based assay data. On the other hand, CGBFPs are generated from computational prediction of CPIs using the Chemical Genomics-Based Virtual Screening (CGBVS) method. Therefore, CGBFPs do not have missing information mainly caused by the absence of assay data. Results: Chemogenomics-Based Similarity Profiling (CGBSP) of the screening library (2.6 million compounds) yielded 27 compounds which were evaluated for in vitro eEF2K inhibitory activity. Three compounds with interesting results were identified. Compounds 2 (IC50 = 11.05 µM) and 4 (IC50 = 43.54 µM) are thieno[2,3-b]pyridine derivatives that have the same scaffolds with a known eEF2K inhibitor, while compound 13 (IC50 = 70.13 µM) was a new thiophene-2-amine-type eEF2K inhibitor. Conclusions: CGBSP supplied an efficient strategy in the identification of novel eEF2K inhibitors and provided useful scaffolds for optimization.

3.
ChemMedChem ; 16(6): 955-958, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33289306

RESUMO

Discoidin domain receptor 1 (DDR1) inhibitors with a desired pharmacophore were designed using deep generative models (DGMs). DDR1 is a receptor tyrosine kinase activated by matrix collagens and implicated in diseases such as cancer, fibrosis and hypoxia. Herein we describe the synthesis and inhibitory activity of compounds generated from DGMs. Three compounds were found to have sub-micromolar inhibitory activity. The most potent of which, compound 3 (N-(4-chloro-3-((pyridin-3-yloxy)methyl)phenyl)-3-(trifluoromethyl)benzamide), had an IC50 value of 92.5 nM. Furthermore, these compounds were predicted to interact with DDR1, which have a desired pharmacophore derived from a known DDR1 inhibitor. The results of synthesis and experiments indicated that our de novo design strategy is practical for hit identification and scaffold hopping.


Assuntos
Benzamidas/farmacologia , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Benzamidas/síntese química , Benzamidas/química , Receptor com Domínio Discoidina 1/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
4.
Chem Pharm Bull (Tokyo) ; 68(3): 227-233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115529

RESUMO

The goal of drug design is to discover molecular structures that have suitable pharmacological properties in vast chemical space. In recent years, the use of deep generative models (DGMs) is getting a lot of attention as an effective method of generating new molecules with desired properties. However, most of the properties do not have three-dimensional (3D) information, such as shape and pharmacophore. In drug discovery, pharmacophores are valuable clues in finding active compounds. In this study, we propose a computational strategy based on deep reinforcement learning for generating molecular structures with a desired pharmacophore. In addition, to extract selective molecules against a target protein, chemical genomics-based virtual screening (CGBVS) is used as post-processing method of deep reinforcement learning. As an example study, we have employed this strategy to generate molecular structures of selective TIE2 inhibitors. This strategy can be adopted into general use for generating selective molecules with a desired pharmacophore.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Estrutura Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...